

GSoC 2023 Project Proposal for

Improving the sense of scale and
navigation in high energy physics

event visualization
(Duration: 350 hours)

SOMYA BANSAL
INDIAN INSTITUTE OF TECHNOLOGY (BHU),

VARANASI
+91 9413321059 somya-bansal-73b041205
somya.bansal.cse20@itbhu.ac.in Somya-Bansal159

https://www.linkedin.com/in/somya-bansal-73b041205/
https://github.com/Somya-Bansal159

GSoC ’23 | Project Proposal for Phoenix 2

Table of Contents
Table of Contents 2
1. Basic Information 3

1.1. Personal Details 3

1.2. About Me 3

2. Project 4
2.1. Abstract 4

2.2. Motivation 4

2.3. Why HEP Software Foundation? 4

2.4. Proposed Deliverables 5

2.5. Plan of Action 6

2.5.1. Improve the Grid Functionality 6

2.5.2. Add Measurement Capability 9

2.5.3. Navigate to Detector Parts 11

2.5.4. Visualise Geometry Dimensions 13

2.5.5. Testing and Documentation 13

2.6. Timeline 14

3. Commitments 16
4. Contributions 17

4.1. Evaluation tasks: 17

4.2. Merged PR: 17

5. Post GSoC 17

GSoC ’23 | Project Proposal for Phoenix 3

1. Basic Information
1.1. Personal Details
Name: Somya Bansal
Major: Computer Science and Engineering
Degree: Integrated Dual Degree (B. Tech + M. Tech)
Year: 3rd
Institute: Indian Institute of Technology BHU, Varanasi, Uttar Pradesh,
India
Resume:
https://drive.google.com/file/d/1xKwPCaVIXsvcdzliYJvS4WkHmOjJ1vb
d/view?usp=sharing
Time zone: Indian Standard Time (UTC + 5.30)

1.2. About Me
I am Somya Bansal, a 3rd-year undergraduate at the Indian Institute
of Technology BHU, Varanasi, pursuing an Integrated Dual Degree (B.
Tech + M. Tech) program in Computer Science and Engineering. I have
experimented with various domains like machine learning, computer
vision, robotics, web development, etc. I love writing reusable and
maintainable code for others to use.

I have previously worked with the Django framework for the backend
and developed a few websites. For the front end, I am familiar with
Angular JS.

• I have developed a Django-based application for the online
registration of vaccination slots for Covid-19. This portal allows
a user to book slots for his/her vaccination as per the available
slots in various centers of his/her city. He/she can choose the
type of vaccine as well.

• Another application is to write a daily review to boost
productivity. Users can write a review of their whole day and
view previous reviews as well as compare their reviews with
that of their friends. Users can change the visibility of their
review such that it is visible to everyone, their friends, or no one.

https://drive.google.com/file/d/1xKwPCaVIXsvcdzliYJvS4WkHmOjJ1vbd/view?usp=sharing
https://drive.google.com/file/d/1xKwPCaVIXsvcdzliYJvS4WkHmOjJ1vbd/view?usp=sharing
https://reviewyourday.pythonanywhere.com/

GSoC ’23 | Project Proposal for Phoenix 4

2. Project
2.1. Abstract
Phoenix is an open-source Angular-based web application written
using the ThreeJS library to visualize the experiments conducted in
various detectors of CERN LHC in 3D. Various tools can be found on
the page to customize the view.

This project focuses on two features along with documenting them as
well, i.e., navigation and scale. Navigation refers to developing a
feature to easily browse through the geometry of the detector. The
aim is to display a list of various parts of the detector, on which, if the
user clicks, that part in the 3D scene is automatically highlighted so as
to provide the user with an idea of its location. Scale refers to
developing a feature to get an idea of the positions, dimensions, and
scale of the objects while visualizing an event. This can be
implemented using 3D rulers with grids or an interactive tool to show
3D coordinates of an object.

2.2. Motivation
The 3D visualization of the detector experiments by the means of
Phoenix is an intelligent initiative to study collisions. Right now, the
geometry of the detector and the event data has been rendered as
ThreeJS meshes, but a researcher also needs an estimate of the
relative locations of the particles and dimensions of the detector parts.
The 3D coordinates, as well as gridlines, should be introduced so as to
extract the position coordinates and do the necessary calculations.
The Phoenix application greatly lacks this functionality, the
implementation of which can highly boost the research work.

2.3. Why HEP Software Foundation?
I am specifically applying for HSF only for GSoC’ 2023 and do not
intend to apply anywhere else, the reason being I have always been
intrigued by the quest going on in the Large Hadron Collider,
especially since the discovery of the Higgs Boson particle. I also take
an interest in the standard model and the latest discoveries done by

GSoC ’23 | Project Proposal for Phoenix 5

LHC. As a software developer who would love to contribute to open
source and is equipped with ThreeJS, and also as a keen physics
enthusiast, I could find no other place to learn from other than
contributing to this project. I am looking forward to working with
CERN-HSF in the future. Submitting this proposal is my very first
initiative for the same.

2.4. Proposed Deliverables
• When the user clicks anywhere, the first object under the mouse

pointer that is visible to the user will be noted, and its
coordinates will be displayed near the mouse pointer for a
second.

• An option will be provided that can be toggled to view a
customizable 3D cartesian grid at the origin of the detector. The
grid will have parallel XY planes, parallel YZ planes, and parallel
ZX planes. Some of the customizations will be:

o View any one, two, or all of the XY, YZ, and ZX planes.
o Change the spacing between parallel planes.
o Select the distance from the origin up to which gridlines are

to be shown.
o Show labels and coordinates on the X, Y, and Z axes.
o (Optional) Change the origin of the gridlines to a specific

subdetector, i.e., to translate the gridlines and thereby
translate the position coordinates of the points by a certain
value.

• User can click on a checkbox to enable finding distances
between any two points. User can click any two points to find
the Euclidean distance between them.

• Various parts of the detector will be listed upon toggling an
option from the UI menu, and some information will be there
beside every part. There will be two options in front of each list
element. One of them can be clicked to zoom into the bounding
box of that particular part. The second one will highlight/outline
that particular part.

• When the user clicks on any detector part, its dimensions will be
displayed for a second. In order to develop this representation, I

GSoC ’23 | Project Proposal for Phoenix 6

will investigate solutions in industry standard 3D applications,
such as Blender.

• (Optional) Fisheye effect: Center of the scene (heart of the
detector) will be enlarged and boundaries will be shrunk. The
scene will be displayed on a logarithmic scale. It will allow user
to view whole of the event simultaneously without zooming
in/out.

• Documentation and Testing: I will write unit tests and E2E tests
for the features to ensure that the implemented features will
work as intended in various scenarios. I will document the
updates made in various helper files. I will practice best practices
to write optimized code so that lesser computations are to be
done to smoothly render the display.

2.5. Plan of Action
I will begin by reviewing the structure of the codebase and analyzing
where all the components displayed in the UI are defined. Also, I will
take time to read the documentation to understand the helper
functions in various manager files like scene-manager.ts, selection-
manager.ts, controls-manager.ts, etc.

I have already started to work on some easier items. As of now, I have
explored how to generate gridlines and have written its code. I have
also generated a UI component to list detector parts. I will first finalize
my ideas in discussion with Phoenix users and developers. Gridlines
will not require much effort, but showing dimensions, distances,
making it easier to navigate the geometry etc., will require a lot of
research and will consume major portion of the timeline.

2.5.1. Improve the Grid Functionality
Expected due date: June 11
Objective: Add a customizable cartesian grid to the detector to better
get an estimate of the position of the objects.
Deliverables:

• A toggle button for a 3D cartesian grid.

GSoC ’23 | Project Proposal for Phoenix 7

• A trackbar to change the number of planes. For example, say XY
plane (z=0), so we can have z=±100, z=±200 etc. as well.

• A trackbar to change the sparsity of gridlines. For example, if the
XY planes are z = 0, 100, 200, 300… its sparsity can be increased
to z = 0, 200, 400, 600…

• Three toggle buttons to separately view XY, YZ and ZX planes.
So, at a time, the user can choose to view any one, two or all
three of the XY, YZ or ZX planes.

I will begin by modifying the view-options component in the UI menu
to add another checkbox to show the cartesian grid.

The view-options.component.ts file will have the following extra
functions:

• setCartesianGrid will initialize the grid, if none is already
present, and toggle its display.

• addXYPlanes will display more XY planes even farther from the
origin (using a trackbar).

• showXYPlanes will toggle the display of XY planes.
• changeSparsity will be used to change the spacing between the

gridlines (using a trackbar).
• callSetShowCartesianGrid will call the main function from UI

Manager.

callSetShowCartesianGrid() {
 this.eventDisplay
 .getUIManager()
 .setShowCartesianGrid(
 this.showCartesianGrid,
 this.showXY,
 this.xDistance,
 this.sparsity
);
}

The respective changes will be incorporated in the corresponding html
file as well.

GSoC ’23 | Project Proposal for Phoenix 8

The UI Manager will call the facility from the Scene Manager where it
will be actually implemented. The main function inside the scene
manager will look something like:

public setCartesianGrid(
 visible: boolean,
 zDistance: number,
 sparsity: number = 1,
 scale: number = 3000 // the maximum extent of the
 // gridline
) {
 // initialise the grid for the first time
 if (this.cartesianGrid == null):
 this.cartesianGrid = new Group();

 for z = -scale to +scale:
 // define every consecutive xyPlane
 for y = -scale to +scale:
 // generate geometry of horizonatal lines
 for x = -scale to +scale:
 // generate geometry of vertical lines

 // add these lines to the scene

 this.cartesianGrid.children.visible = false;
 if(visible):
 for all the gridlines that the user wants:

 // based on sparsity, zDistance from origin upto
 // which gridlines are to be shown

 this.cartesianGrid.children.visible = true;
}

I will then extend this feature to YZ and ZX planes and add ruler
(coordinates) on X, Y, and Z axes.

GSoC ’23 | Project Proposal for Phoenix 9

Here is an image of gridlines, similar to which can be expected:

To change the origin of the gridlines, I will introduce an offset to the
coordinates of the geometry and translate it to the offset. The offset
will be selected by the user. Accordingly, the labels will also be
modified.

2.5.2. Add Measurement Capability
Expected due date: June 25
Objective: To enable the user to easily find the positions and distances
of various objects.
Deliverables:

• A toggle button for the 3D coordinates.
• User can click on the window and get the scene 3D coordinates

of the point clicked.
• The coordinates will be visible near the mouse pointer for a

second.
• Another toggle button for the distance between two points.
• User can click on two points and get the distance between them

displayed for a second.

I can proceed by adding another UI Menu component. On toggling it,
the 3D coordinates will be displayed.

GSoC ’23 | Project Proposal for Phoenix 10

So, I am planning to get the coordinates using ThreeJS raycaster. It will
give a set of intersects. Firstly, I will filter out those intersects that are
not visible in the scene. This is because raycaster intersects don’t
consider clipping and return those intersects as well that have been
clipped.

Now, I will take the closest intersect and render its coordinates.

To achieve this, there will be two functions defined, first is to check if
an intersect is an event data or not, second is to check if it is inside the
clipped region or not. So, if an intersect is inside the clipped region, but
is an event data, then I will not discard it. Because clipping is only for
detector geometry and not for the event data.

The main implementation of the function will be written in the three-
manager/index.ts:

public show3DMousePoints(show: boolean) {
 const camera = this.controlsManager.getMainCamera();
 const scene = this.sceneManager.getScene();
 const raycaster = new Raycaster();

A function to check if the clicked object is an event data or not:

this.isEventData = (elem) => {
 elem.object.traverseAncestors((elem2) => {
 if (elem2.name == 'EventData') {
 // elem is an Event Data
 }
 });
};

A function, isVisible will be added to check if the clicked point is a
clipped point or not. If the clipped angle is less than 180 deg, then
discard the intersect if it is between the clipped region. If the clipped
region is greater than 180 deg, then consider the intersect if it is
between the visible region.

discard

accept

GSoC ’23 | Project Proposal for Phoenix 11

I will then add an event listener to detect any mouse clicks. On each
mouse click, it will find raycaster intersects under the mouse pointer
and return the closest visible intersect.

The 3D coordinates of the intersected point will be displayed on the
screen (at the mouse pointer position) for a second:

const coordinates = mainIntersect.point;

This is how clicking on a point can display its coordinates:

In a similar fashion, the points clicked can be grouped into two. For
example, if points A, B, C, D, E, and F are clicked (in order), then three
groups, (A, B), (C, D), and (E, F), can be formed, and the distance
between both the points of a group can be calculated and displayed
using the distance formula. So, I know the 3D coordinates of A and B,
the distance AB will be:

√(𝑥𝐴 − 𝑥𝐵)
2 + (𝑦𝐴 − 𝑦𝐵)

2 + (𝑧𝐴 − 𝑧𝐵)
2

2.5.3. Navigate to Detector Parts
Expected due date: July 10
Objective: Let the user discover various parts of the detector
geometry.
Deliverables

GSoC ’23 | Project Proposal for Phoenix 12

• User can toggle a button to view the collection of geometry
parts, such as warm structure, feet, barrel toroid etc.

• On selecting a collection, its elements will be listed.
• There will be two buttons in front of each element.
• Selecting first button will zoom into its bounding box.
• Selecting second button will highlight the detector object.

I will add another component in the UI menu, say geometry-browser.
It will have a sub-component geometry-browser-overlay. Toggling
this button will display an overlay containing information about the
various parts of the detector. The detector parts are grouped into
various collections, for example, SCT endcaps, feet, warm structure,
etc. So, each group will have a separate collection, and
getGeometries function of SceneManager will help to get all the
collections. The overlay will give the option to select one of the
collections to view its children. The changeCollection function will be
called after selecting any collection. It will simply extract all the
children of the selected collection.

Another function, highlightObject will be called when the first
button of any detector part will be clicked. This will outline that
particular part. It will make use of the selectionManager to outline the
objects.

lookAtObject will be called on clicking the second button whose
implementation will be in the controlsManager. It will zoom into that
particular part.

Collection can be selected from a drop-down list.

GSoC ’23 | Project Proposal for Phoenix 13

All elements of the collection will be listed down.

Information about each component can be displayed further.

2.5.4. Visualise Geometry Dimensions
Expected due date: August 20
Objective: To get an estimate of the size of detector parts.
Deliverables

• User can toggle a button to view the collection of geometry
parts, such as warm structure, feet, barrel toroid etc.

• On selecting a collection, its elements will be listed.
• Selecting any element will display its dimensions for a few

seconds.

I will extract the dimensions of each detector part and try to render it
upon clicking. So, here again, I will list all the components of the
detector. On clicking any component, I am planning to display the
dimensions of the bounding cuboid. The dimensions will be visible for
a few seconds, or the user can toggle to hide them.

2.5.5. Testing and Documentation
Expected due date: September 4
Objective: To test if the new features work well with the existing ones.
Deliverables

• Unit tests for each feature and E2E tests.
• Documentation of the additional features.

GSoC ’23 | Project Proposal for Phoenix 14

I will write unit tests after completing each feature. I will then write
E2E tests to check the overall working before merging the updates to
the main application. I will follow the documentation along with this
and study the test.ts files. This will help me write tests for the new
features as well. I will make sure that introducing my changes will not
affect any of the existing functions. Finally, I will document the
features.

2.5.6. (Optional) Adding Fisheye effect
Expected due date: October 13
Objective: To allow the user to view whole of the event data
simultaneously.
Deliverables

• Center of the scene (heart of the detector) will be enlarged and
boundaries will be shrunk.

• It will allow user to view whole of the event simultaneously
without zooming in/out.

If I fix the camera position, and try to render the whole event with
zoomed in center, it is not feasible. Because, if the camera is able to
view the boundaries, it implies that it is at a sufficient distance from
the heart of the detector. So, even if I try to render the center in an
enlarged manner, it will be very blurred.

So, my approach will be to render different portions of the scene using
different camera positions. The boundaries will be rendered by
keeping the camera at a farther distance. The center of the detector
will be rendered by keeping the camera closer.

Although it might seem unfeasible and computationally inefficient, I
will explore ways to implement it. Hence, it is kept optional.

2.6. Timeline
Days Plan

Community Bonding Period
May 4 –
May 28

● Read the documentation thoroughly
● Read the details of the codebase
● Join Phoenix weekly meetings with mentors

GSoC ’23 | Project Proposal for Phoenix 15

● Participate in group discussions
● Finalize the features

May 29 –
June 11

● Add cartesian gridlines to the scene
● Make the grid customizable
● Make the grid interactive
● Make the grid movable (translation)
● Label the grid
● Write unit tests
● Document the features
● Deliverable: A user-friendly interactive

cartesian 3D gridlines to estimate the relative
locations of objects.

June 12 –
June 25

● Display the 3D coordinates on clicking a point
● Display the distance between any two points
● Ensure that the gridlines do not have unwanted

interference on the 3D coordinates
● Write unit tests
● Document the features
● Deliverable: A fully functioning interface which

allows clients to see the location of an object in
space, and measure distances between object.

June 25 –
July 10

● Display a navigation bar to list detector
components

● Outline and zoom into a component after
selecting

● Display additional information about each
component

● Write unit tests
● Document the features
● Deliverable: A navigation service to discover

and focus on the various detector components.
Midterm Evaluation

July 14 –
August 20

● Display the dimensions of detector components
● Write unit tests
● Document the features

GSoC ’23 | Project Proposal for Phoenix 16

● Deliverable: A handy feature to find
dimensions of detector components.

August 21
–

September
4

● Write E2E tests
● Remove any extra code
● Try to reduce the size of the codebase by using

DRY principle
● Optimize the code to result smoother displays
● Deliverable: End to end testing + optimize and

shorten the code.
Initial Results Announced

September
4 –

October 13
(Excluding

Mid
semester

examination
s)

● If possible, explore ways to add a fisheye effect
to the scene so that the heart of the detector
can be clearly seen along with the boundaries

● Write unit tests
● Document the feature
● Deliverable: Add a fisheye effect to the scene

October 14
–

November
6

● All unit tests and E2E tests will be run and
passed

● Finally receive confirmation from mentors and
document the functions

● Clean up the documentation written previously

Final Evaluation

3. Commitments
I am flexible with my working hours and can work during the night
time as well. This summer, I have no commitments as such. My
summer vacation will start from May till July, and I can devote 5-6
hours per day during that time. From July onwards, my college will
resume, but I will manage it along with my project. I will be having my
mid-semester examinations in September. Also, I check my emails at
least twice a day. So, communication can be done through mail and
my response can be expected within less than 24 hours.

GSoC ’23 | Project Proposal for Phoenix 17

4. Contributions
4.1. Evaluation tasks:
I loaded a GLTF file in ThreeJS. It had two parts. Clicking each part will
outline it and display its color on the bottom left.

Link: Basic ThreeJS evaluation

Next task was to add cartesian gridlines to the center of the detector,
apart from the already existing eta-phi gridlines. I added the cartesian
in 3D.

Link: Added cartesian gridlines to the scene

4.2. Merged PR:
When the “view overlay” option in the UI Menu is toggled, the
orthographic view is displayed in an overlay window. But on resizing
the window, some extra space was left. So, I fixed this by keeping the
aspect ratio of the window fixed while resizing.

Link: Fixed overlay resizing issue

5. Post GSoC
Post the GSoC period, I would love to continue contributing to this
project and implement more features that may not have been covered
in GSoC in the short time interval. I will also try to provide consistent
patches and bug fixes to the project. I will also try to contribute to the
community by taking part in development activities other than the
scope of this project also.

https://github.com/Somya-Bansal159/Phoenix-Evaluation-Task1
https://github.com/Somya-Bansal159/phoenix/commit/04b4c8127dde8ea73667e9a8babba90e262acaf2
https://github.com/HSF/phoenix/pull/557

